skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Frey, Karen E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent low sea ice extents across Distributed Biological Observatory (DBO) sites in the northern Bering, Chukchi, and Beaufort seas of the Pacific Arctic region have been due to both later fall/winter freeze-up and earlier spring breakup, which in turn have important cascading impacts on the physical, biological, and biogeochemical state of the overall marine environment throughout this region. Satellite observations of the DBO sites that span across a large latitudinal gradient (~62–72°N) include sea surface temperature (SST), sea ice concentration, annual sea ice persistence and the timing of sea ice breakup/formation, chlorophyll-a concentrations, and primary productivity. While we observe significant trends in SST, sea ice, and chlorophyll-a/primary productivity throughout the year, the most significant and synoptic trends for the DBO sites have been those during late summer and autumn (warming SST during October/November, later shifts in the timing of sea ice formation, and increases in chlorophyll-a/primary productivity during August/September). Measurements of the transmittance of solar radiation through the ocean water column is also one of the critical elements for understanding the potential implications of these recent shifts in sea ice, including impacts on primary production, damaging effects of UV radiation on phytoplankton, photodegradation of dissolved organic matter, and upper ocean heating. Field-based observations of downwelling irradiance and upwelling radiance profiles in the top ~30-50 meters of ocean waters are also presented, collected at discrete stations across DBO sites 1–5 in the northern Bering and Chukchi Seas. Profiles were collected during July 2018, 2019, 2021, 2022, and 2023 as part of the DBO program onboard the Canadian Coast Guard Ship (CCGS) Sir Wilfrid Laurier, and represent a first time series of optical measurements across these DBO sites. Continued monitoring of the transmittance of solar radiation through the water column at these DBO sites will be crucial for understanding changes in the underwater light field as the duration of the open water season continues to lengthen with declining seasonal sea ice cover. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025
  2. Arctic marine primary productivity (the conversion of dissolved inorganic carbon into organic material by photosynthetic organisms) forms the foundation of the marine food web and plays a critical role in global carbon cycling. It is highly sensitive to changes in sea ice cover (see essay Sea Ice), ocean temperature (see essay Sea Surface Temperature), and nutrient availability, all of which are altered by ongoing climate change. Marine primary productivity in the Arctic varies significantly across different regions, influenced by local oceanographic conditions and the timing of sea ice retreat. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025
  3. "The Central Arctic Ocean remains profoundly understudied, particularly with respect to carbon cycling, ecosystem alteration, and associated changes in atmospheric, ice and ocean physics that drive those biological and biogeochemical systems. The region is expected to experience continued marked changes over the coming decades, driven by ongoing climate warming. Yet, because of relatively limited understanding of fundamental characteristics and processes in the region, predicting these changes and their Pan-Arctic linkages remains difficult. The Synoptic Arctic Survey (SAS) is organized around three major research areas: (1) physical drivers of importance to the ecosystem and carbon cycle; (2) the ecosystem response and (3) the carbon cycle. The overarching questions are: “What is the present state, and what are the major ongoing transformations of the Arctic marine system?” The overall objective of this expedition was to quantify the present states of the physical, biological, and biogeochemical systems of the Pacific Arctic (here defined as the Chukchi Sea, Beaufort shelf/slope, Chukchi Borderlands) and Canadian Basin (i.e., the Makarov and Canada basins) during summer 2022." - Cruise Report USCGC Healy HLY2202/AWS2022 [Prepared by Carin Ashjian (cashjian@whoi.edu) and the HLY2202 Science Team]. This dataset presents upper ocean (75 meters) chlorophyll-a and pheophytin concentrations collected at hydrographic stations. Pheophytin proportions are additionally provided to inform on the relative freshness of observed phytoplankton blooms. 
    more » « less
  4. Westergaard-Nielsen, Andreas (Ed.)
    Massive declines in sea ice cover and widespread warming seawaters across the Pacific Arctic region over the past several decades have resulted in profound shifts in marine ecosystems that have cascaded throughout all trophic levels. The Distributed Biological Observatory (DBO) provides sampling infrastructure for a latitudinal gradient of biological “hotspot” regions across the Pacific Arctic region, with eight sites spanning the northern Bering, Chukchi, and Beaufort Seas. The purpose of this study is two-fold: (a) to provide an assessment of satellite-based environmental variables for the eight DBO sites (including sea surface temperature (SST), sea ice concentration, annual sea ice persistence and the timing of sea ice breakup/formation, chlorophyll- a concentrations, primary productivity, and photosynthetically available radiation (PAR)) as well as their trends across the 2003–2020 time period; and (b) to assess the importance of sea ice presence/open water for influencing primary productivity across the region and for the eight DBO sites in particular. While we observe significant trends in SST, sea ice, and chlorophyll- a /primary productivity throughout the year, the most significant and synoptic trends for the DBO sites have been those during late summer and autumn (warming SST during October/November, later shifts in the timing of sea ice formation, and increases in chlorophyll- a /primary productivity during August/September). Those DBO sites where significant increases in annual primary productivity over the 2003–2020 time period have been observed include DBO1 in the Bering Sea (37.7 g C/m 2 /year/decade), DBO3 in the Chukchi Sea (48.0 g C/m 2 /year/decade), and DBO8 in the Beaufort Sea (38.8 g C/m 2 /year/decade). The length of the open water season explains the variance of annual primary productivity most strongly for sites DBO3 (74%), DBO4 in the Chukchi Sea (79%), and DBO6 in the Beaufort Sea (78%), with DBO3 influenced most strongly with each day of additional increased open water (3.8 g C/m 2 /year per day). These synoptic satellite-based observations across the suite of DBO sites will provide the legacy groundwork necessary to track additional and inevitable future physical and biological change across the region in response to ongoing climate warming. 
    more » « less
  5. Li, Delei (Ed.)
    Decreased sea ice cover in the northern Bering Sea has altered annual phytoplankton phenology owing to an expansion of open water duration and its impact on ocean stratification. Limitations of satellite remote sensing such as the inability to detect bloom activity throughout the water column, under ice, and in cloudy conditions dictate the need for shipboard based measurements to provide more information on bloom dynamics. In this study, we adapted remote sensing land cover classification techniques to provide a new means to determine bloom stage from shipboard samples. Specifically, we used multiyear satellite time series of chlorophyll a to determine whether in-situ blooms were actively growing or mature (i.e., past-peak) at the time of field sampling. Field observations of chlorophyll a and pheophytin (degraded and oxidized chlorophyll products) were used to calculate pheophytin proportions, i.e., (Pheophytin/(Chlorophyll a + Pheophytin)) and empirically determine whether the bloom was growing or mature based on remotely sensed bloom stages. Data collected at 13 north Bering Sea stations each July from 2013–2019 supported a pheophytin proportion of 28% as the best empirical threshold to distinguish a growing vs. mature bloom stage. One outcome was that low vs. high sea ice years resulted in significantly different pheophytin proportions in July; in years with low winter-to-spring ice, more blooms with growing status were observed, compared to later stage, more mature blooms following springs with abundant seasonal sea ice. The detection of growing blooms in July following low ice years suggests that changes in the timing of the spring bloom triggers cascading effects on mid-summer production. 
    more » « less
  6. Mancinelli, Giorgio (Ed.)
    The expected reduction of ice algae with declining sea ice may prove to be detrimental to the Pacific Arctic ecosystem. Benthic organisms that rely on sea ice organic carbon (iPOC) sustain benthic predators such as the Pacific walrus ( Odobenus rosmarus divergens ). The ability to track the trophic transfer of iPOC is critical to understanding its value in the food web, but prior methods have lacked the required source specificity. We analyzed the H-Print index, based on biomarkers of ice algae versus phytoplankton contributions to organic carbon in marine predators, in Pacific walrus livers collected in 2012, 2014 and 2016 from the Northern Bering Sea (NBS) and Chukchi Sea. We paired these measurements with stable nitrogen isotopes ( δ 15 N) to estimate trophic position. We observed differences in the contribution of iPOC in Pacific walrus diet between regions, sexes, and age classes. Specifically, the contribution of iPOC to the diet of Pacific walruses was higher in the Chukchi Sea (52%) compared to the NBS (30%). This regional difference is consistent with longer annual sea ice persistence in the Chukchi Sea. Within the NBS, the contribution of iPOC to walrus spring diet was higher in females (~45%) compared to males (~30%) for each year (p < 0.001), likely due to specific foraging behavior of females to support energetic demands associated with pregnancy and lactation. Within the Chukchi Sea, the iPOC contribution was similar between males and females, yet higher in juveniles than in adults. Despite differences in the origin of organic carbon fueling the system (sea ice versus pelagic derived carbon), the trophic position of adult female Pacific walruses was similar between the NBS and Chukchi Sea (3.2 and 3.5, respectively), supporting similar diets (i.e. clams). Given the higher quality of organic carbon from ice algae, the retreat of seasonal sea ice in recent decades may create an additional vulnerability for female and juvenile Pacific walruses and should be considered in management of the species. 
    more » « less
  7. An assessment of the production, distribution and fate of highly branched isoprenoid (HBI) biomarkers produced by sea ice and pelagic diatoms is necessary to interpret their detection and proportions in the northern Bering and Chukchi Seas. HBIs measured in surface sediments collected from 2012 to 2017 were used to determine the distribution and seasonality of the biomarkers relative to sea ice patterns. A northward gradient of increasing ice algae deposition was observed with localized occurrences of elevated IP25 (sympagic HBI) concentrations from 68–70˚N and consistently strong sympagic signatures from 71–72.5˚N. A declining sympagic signature was observed from 2012 to 2017 in the northeast Chukchi Sea, coincident with declining sea ice concentrations. HBI fluxes were investigated on the northeast Chukchi shelf with a moored sediment trap deployed from August 2015 to July 2016. Fluxes of sea ice exclusive diatoms (Nitzschia frigida and Melosira arctica) and HBI producing taxa (Pleurosigma, Haslea and Rhizosolenia spp.) were measured to confirm HBI sources and ice associations. IP25 was detected year-round, increasing in March 2016 (10 ng m-2 d-1) and reaching a maximum in July 2016 (1331 ng m-2 d-1). Snowmelt triggered the release of sea ice algae into the water column in May 2016, while under-ice pelagic production contributed to the diatom export in June and July 2016. Sea ice diatom fluxes were strongly correlated with the IP25 flux, however associations between pelagic diatoms and HBI fluxes were inconclusive. Bioturbation likely facilitates sustained burial of sympagic organic matter on the shelf despite the occurrence of pelagic diatom blooms. These results suggest that sympagic diatoms may sustain the food web through winter on the northeast Chukchi shelf. The reduced relative proportions of sympagic HBIs in the northern Bering Sea are likely driven by sea ice persistence in the region. 
    more » « less
  8. Abstract West Siberia contains some of the largest soil carbon stores on Earth owing to vast areas of peatlands and permafrost, with the region warming far faster than the global average. Organic matter transported in fluvial systems is likely to undergo distinct compositional changes as peatlands and permafrost warm. However, the influence of peatlands and permafrost on future dissolved organic matter (DOM) composition is not well characterized. To better understand how these environmental drivers may impact DOM composition in warming Arctic rivers, we used ultrahigh resolution Fourier‐transform ion cyclotron resonance mass spectrometry to analyze riverine DOM composition across a latitudinal gradient of West Siberia spanning both permafrost‐influenced and permafrost‐free watersheds and varying proportions of peatland cover. We find that peatland cover explains much of the variance in DOM composition in permafrost‐free watersheds in West Siberia, but this effect is suppressed in permafrost‐influenced watersheds. DOM from warm permafrost‐free watersheds was more heterogenous, higher molecular weight, and relatively nitrogen enriched in comparison to DOM from cold permafrost‐influenced watersheds, which were relatively enriched in energy‐rich peptide‐like and aliphatic compounds. Therefore, we predict that as these watersheds warm, West Siberian rivers will export more heterogeneous DOM with higher average molecular weight than at present. Such compositional shifts have been linked to different fates of DOM in downstream ecosystems. For example, a shift toward higher molecular weight, less energy‐rich DOM may lead to a change in the fate of this material, making it more susceptible to photochemical degradation processes, particularly in the receiving Arctic Ocean. 
    more » « less